Scientific research

Comprehensive physical-chemical research and technological development of the processes of growing perfect single crystals for laser applications and optoelectronics are concentrated on the following main areas:

– Search for new nonlinear materials for UV and mid-IR range and growing crystals of high optical quality.

– Modification of the crystals by substitution of lattice atoms and crystal doping by rare earth cations to obtain new functional properties.

– Investigation of the features of the growth processes of new laser single crystals.

– Identification of correlations between the growth parameters of nonlinear laser crystals, their composition, structure, defects and functional properties.

The research is carried out in cooperation with colleagues from scientific organizations (Institute of Geology and Mineralogy SB RAS, Novosibirsk State University, Institute of Physics SB RAS, Ural Federal University, Institute of General Physics RAS, etc.), including scientific projects of RSF, RFBR, etc.

Technological developments and methods of growing a number of single crystals are protected by Russian Federation patents, awarded with diplomas and medals of local and international exhibitions.

The main achievements of recent years include the following results:

New data on the influence of the conditions for obtaining LiBC2 (B=Ga, In; C=S, Se, Te) on the local structure of the cation sublattice, defects and functional properties have been obtained. It is shown that the nonstoichiometry of the composition affects the nature of point defects and thereby the optical characteristics of crystals. In turn, deviations from stoichiometry depend on the composition of the initial melt, growing conditions and post-growth annealing.

1. M. Beutler, I. Rimke, E. Buttner, V. Petrov, L. Isaenko. Difference-frequency generation of fs and ps mid-IR pulses in LiInSe2 based on Yb-fiber laser pump sources. OPTICS LETTERS 39 (2014) 4353-4355
https://opg.optica.org/ol/abstract.cfm?uri=ol-39-15-4353

2. I.G. Vasilyeva, A.A. Pochtar, L.I. Isaenko. Origin of solid solution in the LiInSe2-In2Se3 system. Journal of Solid State Chemistry 220 (2014) 91-96
https://www.sciencedirect.com/science/article/abs/pii/S0022459614003612

3. Alexander Yelisseyev, Pavel Krinitsin; Ludmila Isaenko, Sergey Grazhdannikov. Spectroscopic properties of nonlinear optical LiGaTe2 crystal. Optical Materials 42 (2015) 276-280
https://www.sciencedirect.com/science/article/abs/pii/S0925346715000397

4. V. Vedenyapin, A. Boyko, D. Kolker, L. Isaenko, S. Lobanov, N. Kostyukova, A. Yelisseyev, V. Petrov. LiGaSe2 optical parametric oscillator pumped by a Q-switched Nd:YAG laser. Laser Physics Letters 13 (2016) 115401
https://iopscience.iop.org/article/10.1088/1612-2011/13/11/115401

5. L.I. Isaenko, A.P. Yelisseyev. Recent study of nonlinear crystals for the mid IR. Semiconductor Science and Technology 31 (2016) 123001
http://dx.doi.org/10.1088/0268-1242/31/12/123001

6. Valeri A. Drebushchak, Ludmila I. Isaenko, Sergey I. Lobanov, Pavel G. Krinitsin, Sergey A. Grazhdannikov. Experimental heat capacity of LiInS2, LiInSe2, LiGaS2, LiGaSe2 and LiGaTe2 from 180 to 460 K. Journal of Thermal Analysis and Calorimetry 129 (2017) 103-108
https://link.springer.com/article/10.1007/s10973-017-6176-9

7. A.A. Lavrentyev, B.V. Gabrelian, V.T. Vu, L.N. Ananchenko, L.I. Isaenko, A.P. Yelisseyev, O.Y. Khyzhun. Electronic structure and optical properties of noncentrosymmetric LiGaSe2: Experimental measurements and DFT band structure calculations. Optical Materials, 66 (2017) 149-159
http://dx.doi.org/10.1016/j.optmat.2017.01.049

8. A.P. Yelisseyev, F. Liang, L. Isaenko, S. Lobanov, A. Goloshumova, Z.S. Lin. Optical properties of LiGaSe2 noncentrosymmetric crystal. Optical Materials 72 (2017) 795-804.
http://dx.doi.org/10.1016/j.optmat.2017.07.020

9. Inga G. Vasilyeva, Ruslan E. Nikolaev, Pavel G. Krinitsin, Ludmila I. Isaenko. Phase Transitions of Nonlinear Optical LiGaTe2 Crystals before and after Melting. The Journal of Physical Chemistry C 121 (2017) 17429-17435
https://pubs.acs.org/doi/10.1021/acs.jpcc.7b04962?cookieSet=1

10. Sergey A. Grazhdannikov, Pavel G. Krinitsyn, Aleksey F. Kurus’, Ludmila I. Isaenko, Alexander P. Yelisseyev, Maksim S. Molokeev. LiGaTe2 (LGT) nonlinear crystal: synthesis and crystal growth processes exploration. Materials Science in Semiconductor Processing 72 (2017) 52 – 59
http://dx.doi.org/10.1016/j.mssp.2017.09.017

11. Kiyoshi Kato, Kentaro Miyata, Ludmila Isaenko, Sergei Lobanov, Vitaliy Vedenyapin, Valentin Petrov. Phase-matching properties of LiGaS2 in the 1.025-10.5910 μm spectral range. Optics Letters, 42 (2017) 4363-4366
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-42-21-4363

12. V.V. Atuchin, F. Liang, S. Grazhdannikov, L.I. Isaenko, P.G. Krinitsin, M.S. Molokeev, I.P. Prosvirin, X. Jiang, Z. Lin. Negative thermal expansion and electronic structure variation of chalcopyrite type LiGaTe2. RSC Advances 8 (2018) 9946-9955
https://pubs.rsc.org/en/content/articlelanding/2018/ra/c8ra01079j

13. K. Kato, N. Umemura, L. Isaenko, S. Lobanov, V. Vedenyapin, K. Miyata, V. Petrov. Thermo-optic dispersion formula for LiGaS2. Applied Optics 58 (2019) 1519-1521
https://opg.optica.org/ao/abstract.cfm?uri=ao-58-6-1519

14. Aleksey Kurus, Sergei Lobanov, Sergey Grazhdannikov, Vladimir Shlegel, Ludmila Isaenko. LiGaS2 crystal growth under low temperature gradient conditions by the modified Bridgman method. Materials Science and Engineering: B 262 (2020) 114715
https://doi.org/10.1016/j.mseb.2020.114715

15. T.V. Vu, A.A. Lavrentyev, B.V. Gabrelian, D.D. Vo, P.D. Khang, L.I. Isaenko, S.I. Lobanov, A.F. Kurus’, O.Y. Khyzhun. Optical and electronic properties of lithium thiogallate (LiGaS2): experiment and theory. RSC Advances 10 (2020) 26843- 26852
https://pubs.rsc.org/en/content/articlelanding/2020/ra/d0ra03280h

16. S.N. Smetanin, M. Jelinek, V. Kubecek, A.F. Kurus, V.N. Vedenyapin, S.I. Lobanov, L.I. Isaenko. 50-μJ level, 20-picosecond, narrowband difference-frequency generation at 4.6, 5.4, 7.5, 9.2, and 10.8 μm in LiGaS2 and LiGaSe2 at Nd:YAG laser pumping and various crystalline Raman laser seedings. Optical Materials Express 10 (2020) 1881-1890
https://doi.org/10.1364/OME.395370

17. K. Siemek, A.P. Yelisseyev, P. Horodek, S.I. Lobanov, A.A. Goloshumova, A.V. Belushkin, L.I. Isaenko. Optical and positron annihilation studies of structural defects in LiInSe2 single crystals. Optical Materials 109 (2020) 110262
https://doi.org/10.1016/j.optmat.2020.110262

18. A.V. Belushkin, A.A. Bogdzel, A.A. Goloshumova, L.I. Isaenko, S.I. Lobanov, V.M. Milkov, A.Yu. Tarasova, A.P. Yelisseyev. Study of LiInSe2 Single Crystals for the Thermal Neutron Detection. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 14 (2020) S15–S18
https://link.springer.com/article/10.1134/S102745102007006X

19. Alexey Kurus, Alexander Yelisseyev, Sergei Lobanov, Pavel Plyusnin, Maxim Molokeev, Leonid Solovyev, Dmitry Samoshkin, Sergei Stankus, Svetlana Melnikova and Lyudmila Isaenko. Thermophysical Properties of Lithium Thiogallate that Are Important for Optical Applications RSC Advances 11 (2021) 39177–39187
https://pubs.rsc.org/en/Content/ArticleLanding/2021/RA/D1RA05698K

20. O. Daulbaev, L. I. Isaenko, A. A. Bogdzel’, S. I. Lobanov, P. G. Krinitsyn, V. M. Milkov, A. V. Belushkin. Comparative Study of LiInSe2 Single Crystals for Thermal-Neutron Detection. Crystallography Reports 67 (2022) 464–469
https://link.springer.com/article/10.1134/S1063774522030063

21. Victor V. Atuchin, Ludmila I. Isaenko, Sergei I. Lobanov, Alina A. Goloshumova, Maxim S. Molokeev, Zhaoming Zhang, Zhang Xingyu, Xingxing Jiang, Zheshuai Lin. Anisotropic thermal expansion and electronic structure of LiInSe2. Molecules 27 (2022) 5078
https://doi.org/10.3390/molecules27165078

Large AgLiGa2Se4 crystals of optical quality were obtained. Their laser damage threshold AgLiGa2Se4 is 5 times higher than the values for AgGaSe2 (τ = 6 ns, λ = 1.053 µm), at τ= 0.5 ns the value exceeds 1 GW/cm2 (λ = 1.064 µm, 1000 Hz). Dispersion characteristics are measured, and the form of the Selmeyer equations is selected. Experimental data on the conversion of 5.0 microns into the second harmonic have been obtained, confirming the calculation of the Sellmeyer equations.

1. Alexander Yelisseyev, Sergei Lobanov, Maxim Molokeev, Shengzi Zhang, Alexei Pugachev, Zheshuai Lin, Vitaly Vedenyapin, Alexei Kurus, Avag Khamoyam, Ludmila Isaenko. A New Nonlinear Optical Selenide Crystal AgLiGa2Se4 with Good Comprehensive Performance in Mid-Infrared Region. Advanced Optical Materials 9 (5) (2021) 2001856
https://onlinelibrary.wiley.com/doi/abs/10.1002/adom.202001856

2. A.V. Panchenko, A.S. Sukhikh, L.I. Isaenko, S.A. Gromilov. Approach to the study of the dynamics of unit cell parameters of single crystals in a wide temperature range on the example of Ag0.39Li0.61GaSe2. Journal of Structural Chemistry 63 (2022) 99973
https://www.scilit.net/article/1e7b27d888d297936513bdc6efe07fd2

3. L. Isaenko, L. Dong, A. Kurus, Z. Lin, A. Yelisseyev, S. Lobanov, M. Molokeev, K. Korzhneva, A. Goloshumova. LixAg1-xGaSe2: Interplay between lithium and silver in mid-IR nonlinear optical chalcogenides. Advanced Optical Materials (2022) 2201727
https://onlinelibrary.wiley.com/doi/abs/10.1002/adom.202201727

Large Li2Ga2GeS6, LiGaGe2Se6, Li2In2GeSe6 single crystals of optical quality were grown and studied. There is an increase in the nonlinear optical effect for quaternary compounds compared to their ternary counterparts. Ge presence in the composition significantly lowers the melting point in comparison with the corresponding ternary compounds, which reduces considerably the problems associated with the presence of aggressive lithium in the reaction system.

1. L.I. Isaenko, A.P. Yelisseyev, S.I. Lobanov, P.G. Krinitsin, M.S. Molokeev. Structure and optical properties of Li2Ga2GeS6 nonlinear crystal. Optical Materials 47 (2015) 413-419
https://www.sciencedirect.com/science/article/abs/pii/S0925346715003742

2. A. Yelisseyev, L. Isaenko, P. Krinitsin, Fei Liang, A. Goloshumova, D. Naumov, Z.S.Lin. Structure and optical properties of LiGaGe2Se6 nonlinear crystal. Inorganic Chemistry 55 (2016) 8672–8680
https://pubs.acs.org/doi/10.1021/acs.inorgchem.6b01225

3. Ludmila Isaenko, Alexander Yelisseyev, Sergei Lobanov, Vitaliy Vedenyapin, Pavel Krinitsyn, Valentin Petrov. Properties of LiGa0.5In0.5Se2: A Quaternary Chalcogenide Crystal for Nonlinear Optical Applications in the Mid-IR. Crystals 6 (2016) 85
https://www.mdpi.com/2073-4352/6/8/85

4. A.A. Lavrentyev, B.V. Gabrelian, V.T. Vu, L.N. Ananchenko, L.I. Isaenko, A. Yelisseyev, P. Krinitsin, O.Y. Khyzhun. Electronic structure and optical properties of noncentrosymmetric LiGaGe2Se6, a promising nonlinear optical material. Physica B 501 (2016) 74-83
https://www.sciencedirect.com/science/article/abs/pii/S0921452616303568

5. A.A. Lavrentyev, B.V. Gabrelian, Tuan V.Vu, L.I. Isaenko, A. Yelisseyev, O.Y. Khyzhun. Novel nonlinear optical mid-IR material LiGa0.5In0.5Se2: Electronic structure and optical properties. Optical Materials 80 (2018) 12-21
https://www.sciencedirect.com/science/article/abs/pii/S0925346718302271

6. A.P Yelisseyev, M.S Molokeev, X.X. Jiang, P.G. Krinitsin, LI. Isaenko, Z.S. Lin. Structure and optical properties of Li2In2GeSe6 crystal. The Journal of Physical Chemistry C 122 (2018) 17413–17422
https://pubs.acs.org/doi/10.1021/acs.jpcc.8b02799

7. P. Krinitsin, A. Yelisseyev, X.X. Jiang, L. Isaenko, M. Molokeev, Z. Lin, A. Pugachev. Growth, structure and optical properties of nonlinear LiGa0.5In0.5Te2 single crystal. Crystal Growth & Design 19 (2019) 1805–1814
https://pubs.acs.org/doi/10.1021/acs.cgd.8b01788

High quality crystals of APb2X5 (A =K, Rb; X = Cl, Br) and mixed K0.5Rb0.5Pb2X5 crystals doped with rare earth elements (Ce, Pr, Nd, Tb, Dy, Ho, Er, Tm, Yb) were obtained. Their crystal and electronic structure were investigated, the features of the entry of doping impurity into the crystals lattice and the accompanying processes of defect formation were studied. Halide crystals are characterized by low phonon energy of the spectrum, which provides radiative processes in the mid-IR range (up to 10 microns) at rare earth element transitions.

1. A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, S. Payne, R. Solarz, R. Page, M. Nostrand. Spectroscopic study of neodymium-doped potassium-lead double chloride Nd3+:KPb2Cl5 crystals. Optics and Spectroscopy 92 (2002) 83–94
https://link.springer.com/article/10.1134/1.1446585

2. A.A. Merkulov, L.I. Isaenko, V.M. Pashkov, V.G. Mazur, A.V. Virovets, D.Yu. Naumov. Crystal structure of KPb2Cl5 and KPb2Br5. Journal of Structural Chemistry 46 (2005) 103–108
https://link.springer.com/article/10.1007/s10947-006-0015-3

3. A.M. Tkachuk, S.E. Ivanova, L.I. Isaenko, A.P. Yelisseyev, V.A. Pustovarov, M.F. Joubert, Y. Guyot, V.P. Gapontsev. “Emission peculiarities of TR3+-doped KPb2Cl5 laser crystals under selective direct, upconversion and excitonic/host excitation of impurity centers” in Advanced Solid-State Lasers, OSA Trends in Optics and Photonics Series 98 (2005) 69–74
https://opg.optica.org/abstract.cfm?uri=assp-2005-69

4. V. A. Pustovarov, I. N. Ogorodnikov, N. S. Bastrikova, A. A. Smirnov, L. I. Isaenko, A. P. Yelisseyev. Low-temperature time-resolved spectroscopy of APb2X5 crystals (A≡K, Rb; X≡Cl, Br). Optics and Spectroscopy 101 (2006) 234–244
https://link.springer.com/article/10.1134/S0030400X06080108

5. L. I. Isaenko, A. P. Yelisseyev, A. M. Tkachuk, S. E. Ivanova. “New monocrystals with low phonon energy for mid-IR lasers” in Mid-Infrared Coherent Sources and Application. Series B: Physics and Biophysics (Springer-Verlag, 2007), pp. 3–65.

6. A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, Y. Guyot, L. I. Isaenko, V. P. Gapontsev. Upconversion processes in Er3+:KPb2Cl5 laser crystals. Journal of Luminescence 125 (2007) 271–278
https://www.sciencedirect.com/science/article/abs/pii/S0022231306006144

7. Ludmila I. Isaenko, Alexandr A. Merkulov, Svetlana V. Melnikova, Viktor M. Pashkov, Alexandra Yu. Tarasova. Effect of K ↔ Rb Substitution on Structure and Phase Transition in Mixed KxRb1−xPb2Br5 Crystals. Crystal Growth & Design 9 (2009) 2248–2251
https://pubs.acs.org/doi/abs/10.1021/cg8010162

8. L. I. Isaenko, A. A. Merkulov, A. Yu. Tarasova, V. M. Pashkov, V. A. Drebushchak. Coefficients of thermal expansion of the potassium and rubidium halogenide plumbates. Journal of Thermal Analysis and Calorimetry 95 (2009) 323-325
https://link.springer.com/article/10.1007/s10973-008-9089-9

9. A.Yu. Tarasova, Yu.V. Seryotkin, V.M. Pashkov, L.I. Isaenko. Coefficients of thermal expansion of KPb2Cl5 and RbPb2Br5 crystals. Journal of Thermal Analysis and Calorimetry 104 (2011) 795-796
https://link.springer.com/article/10.1007/s10973-010-0964-9

10. A.Yu. Tarasova, L.I. Isaenko, V.G. Kesler, V.M. Pashkov, N.M. Denysyuk, O.Yu. Khyzhun, A.P.Yelisseyev. Electronic structure and fundamental absorption edges of KPb2Br5, K0.5Rb0.5Pb2Br5 and RbPb2Br5 single crystals. Journal of Physics and Chemistry of Solids 73 (2012) 674-682
https://www.sciencedirect.com/science/article/abs/pii/S0022369712000157

11. L. I. Isaenko, I. N. Ogorodnikov, V. A. Pustovarov, A. Yu. Tarasova, V. M. Pashkov. Optical and photoelectron spectroscopy studies of KPb2Cl5 and RbPb2Cl5 laser crystals. Optical Materials 35 (2013) 620–625 https://www.sciencedirect.com/science/article/abs/pii/S0925346712004740

12. Igor Ogorodnikov, Natalia Bastrikova, Vladimir Pustovarov, and Ludmila Isaenko. Optical properties of KPb2Cl5 and RbPb2Cl5 single crystals in far ultraviolet spectral region. Journal of the Optical Society of America B 31 (2014) 1935-1941
https://opg.optica.org/josab/abstract.cfm?uri=josab-31-8-1935

13. A.A. Lavrentyev, B.V. Gabrelian, V.T. Vu, N.M. Denysyuk, P.N. Shkumat, A.Y. Tarasova, L.I. Isaenko, O.Y. Khyzhun. Electronic structure and optical properties of RbPb2Br5. Journal of Physics and Chemistry of Solids 91 (2016) 25–33.
http://dx.doi.org/10.1016/j.jpcs.2015.12.003

14. R. Faoro, M. Tonelli, L.I. Isaenko, A.Y. Tarasova, V.M. Pashkov. Spectroscopy in the 1.4 and 1.8-μm wavelength regions of KPb2Cl5 single crystals doped with trivalent Thulium. Journal of Luminescence 180 (2016) 140-145
http://dx.doi.org/10.1016/j.jlumin.2016.07.059

15. A.A. Lavrentyev, B.V. Gabrelian, V.T. Vu, N.M. Denysyuk, P.N. Shkumat, A.Y. Tarasova, L.I. Isaenko, O.Y. Khyzhun. Specific features of the electronic structure and optical properties of KPb2Br5: DFT calculations and X-ray spectroscopy measurements. Optical Materials 53 (2016) 64–72
https://www.sciencedirect.com/science/article/abs/pii/S0925346716300258

16. A.R. Serazetdinov, A.A. Smirnov, V.A. Pustovarov, L.I. Isaenko. Luminescence of Er3+ doped double lead halide crystals under X-ray, UV, VIS and IR excitation. AIP Conference Proceedings 1886 (2017) 020078.
http://doi.org/10.1063/1.500297

17. Serazetdinov A.R., Smirnov A.A., Pustovarov V.A., Isaenko L.I. Upconversion Luminescence of Er3+ doped KPb2Cl5 and RbPb2Br5 Crystals. AIP Conference Proceedings 2015 (2018)
https://aip.scitation.org/doi/10.1063/1.5055165

18. Damiano, E. Cavalli, A.Yu. Tarasova, L.I. Isaenko, M. Tonelli. Polarized optical spectra of Ho3+-doped KPb2Cl5 single-crystal. Journal of Luminescence 199 (2018) 71-77
https://www.sciencedirect.com/science/article/abs/pii/S0022231317316022

19. Serazetdinov A.R., Smirnov A.A., Pustovarov V.A., Isaenko L.I. Spectroscopic Properties of KPb2Cl5 and RbPb2Br5 Doped with Er3+ and Yb3+. Physics of the Solid State 61 (2019) 811-817.
https://link.springer.com/article/10.1134/S1063783419050299

20. T.V. Vu, A.A. Lavrentyev, B.V. Gabrelian, Dat D. Vo, Khang D. Pham, N.M. Denysyuk, L.I. Isaenko, A.Y. Tarasova, O.Y. Khyzhun. DFT study and XPS measurements elucidating the electronic and opticalproperties of KPb2Cl5. Optical Materials 102 (2020) 109793.
https://doi.org/10.1016/j.optmat.2020.109793

21. T.V. Vu, A.A. Lavrentyev, B.V. Gabrelian, D.D. Vo, H.D. Tong, N.M. Denysyuk, L.I. Isaenko, A.Y. Tarasova, O. Y. Khyzhun. Theoretical and experimental study on the electronic and optical properties of K0.5Rb0.5Pb2Br5: a promising laser host material. RSC Advances 10 (2020) 11156-11164.
https://pubs.rsc.org/en/content/articlelanding/2020/ra/d0ra00718h

22. O.Y. Khyzhun, Tuan V. Vu, A.A. Lavrentyev, B.V. Gabrelian, N.M. Denysyuk, L.I. Isaenko, M.S. Molokeev, A.A. Goloshumova, A.Yu. Tarasova. Growth of a novel K0.4Rb0.6Pb2Cl5 crystal and theoretical and experimental studies of its electronic and optical properties. Optical Materials 124 (2022) 112050
https://doi.org/10.1016/j.optmat.2022.112050

23. Peter Schlosser, Ludmila Isaenko, Aleksandra Tarasova, Vasili Savitski. Diode-pumped Dy:KPb2Cl5 laser in the middle-infrared spectral region. Optics Letters 47 (2022) 1553-1556
https://doi.org/10.1364/OL.454156

Crystals of КTiOAsO4 (KTA), RbTiOAsO4 (RTA) were studied. The kinetics of domain formation under the application of a homogeneous electric field with high time resolution has been investigated. Periodic structures with different period and configuration of domains were made on the basis of KTA. Methods of surface treatment and application of antireflective coatings have been worked out.

1. A.R. Akhmatkhanov, M.A. Chuvakova, I.A. Kipenko, N.A. Dolgushin, D.B. Kolker, V.N. Vedenyapin, L.I. Isaenko, V.Ya. Shur. Abnormal kinetics of domain structure in KTA single crystals. Applied Physics Letters 115 (2019) 212901
https://aip.scitation.org/doi/10.1063/1.5125842

2. L.I. Isaenko, A.P. Eliseev, D.B. Kolker, V.N. Vedenyapin, S.A. Zhurkov, E.Yu. Erushin, N.Yu. Kostyukova, A.A. Boiko, V.Ya. Shur, A.R. Akhmatkhanov, M.A. Chuvakova. Influence of growth temperature of KTiOAsO4 single crystals on their physicochemical parameters and formation of domain structures. Quantum Electronics, 50 (2020) 788-792.
https://iopscience.iop.org/article/10.1070/QEL17265

3. A.R. Akhmatkhanov, M.A. Chuvakova, N.A. Dolgushin, D.B. Kolker, V.N. Vedenyapin, L.I. Isaenko, V.Ya. Shur. Analysis of switching current data in KTA single crystals. Ferroelectrics, 559 (2020) 1–7.
https://doi.org/10.1080/00150193.2020.1721998

Patents:

RU 2 576 638 C2. Isaenko L.I., Lobanov S.I., Yelisseyev A.P., Goloshumova A.A., Krinitsyn P.G. Monocrystalline material SrMgF4 and method for production thereof. Date of publication: 10.03.2016 Bull. № 7.

RU 2 699 639 C1. Krinitsyn P.G., Isaenko L.I., Yelisseyev A.P., Molokeev M.S., Goloshumova A.A. Nonlinear single crystal of lithium chalcogenides with the general formula LiGaxIn1-xTe2 and a method for its preparation. Date of publication: 06.09.2019. Bull. № 25.

RU 200 993 U1. Grazhdannikov S.A., Krinitsyn P.G., Lobanov S.I., Kurus A.F., Isaenko L.I. A thermal unit for growth of single crystals. Date of publication: 23.11.2020 Bull. № 33.

RU 2 763 463 C1. Lobanov S.I., Isaenko L.I., Yelisseyev A.P., Goloshumova A.A., Kurus A.F.
Nonlinear single crystal of lithium chalcogenides and a method of its preparation. Date of publication: 29.12.2021 Bull. № 1.

Scroll to Top